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The study of three-nucleon wave functions has recently drawn considerable attention owing to experi­
ments on elastic scattering of high-energy electrons from H3 and He3. We attempt here to obtain independent 
information on these wave functions using the available experimental data on slow-neutron capture by 
deuterium. This reaction goes mainly through magnetic dipole radiation from both exchange and spin 
magnetic-moment interaction. Three types of three-body wave functions, Gaussian, Irving, and Irving-
Gunn, are considered. An upper limit on the probability of the S' state of mixed symmetry (2Si/2 state with 
r = f ) is deduced from the experimental capture rate. 

I. INTRODUCTION 

RECENT experiments1 on the elastic scattering of 
high-energy electrons from H3 and He3 have been 

interpreted theoretically by SchifT2 in terms of three 
wave functions based on different dependence on the 
internucleon distances. The spatial wave functions 
used are exponential, Gaussian, and Irving. Two param­
eters a and P , associated with each wave function, 
appear in the calculations. The first is a size parameter 
for which the value obtained from these experimental 
data is in good agreement with the one obtained from 
the Coulomb energy of He3. The other parameter is the 
probability of the mixed-symmetry 6" state which is 
found to be about 4%. 

The purpose of our calculation is to obtain an inde­
pendent estimate for an upper limit on this probability 
by a study of the capture rate of thermal neutrons by 
deuterons.3 The contribution to this capture rate from 
the interaction with emission of magnetic dipole radia­
tion by the nucleon spins is independent of the dominant 
fully symmetric S state, as was shown many years ago 
by Schiff,4 and is particularly sensitive to the mixed-
symmetry S' state probability. Indeed, it was proposed 
in Ref. 2 as an independent method of determining this 
probability. We give also an estimate of the order of 
magnitude of the exchange moment contribution to this 
capture rate. 

In Sec. I I we discuss the various states to be con­
sidered for the triton ground-state wave function as well 
as for the continuum state, and the necessary spin-
isotopic spin formalism is developed. Section I I I deals 
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with the theoretical calculation of the total capture 
rate for the two cases considered (i.e., emission of mag­
netic dipole radiation by the nucleon spins and by the 
exchange magnetic moment). In Sec. IV we discuss in 
detail the spatial wave functions that have been used. 
Section V gives a discussion of the numerical results. 

II. THEORETICAL FORMALISM 

In order to study the symmetry properties of the 
three-body functions, we make use of the classification 
of triton wave functions given by Derrick and Blatt5 

and adopt SchifFs2 notation. 
Among the ten possible states in which the ground-

state wave function of the three-nucleon system with 
even parity and J=T=\ (charge invariance requires 
the ground state to have T= \) can be classified, we shall 
be concerned only with the fully symmetric 25i / 2 state 
and the mixed-symmetry 2Si /2 state, denoted, respec­
tively, by S and S\ There are good reasons (given in 
Refs. 2, 5, and 6) to believe that the antisymmetric 25i/2 
state, the three 2Pi/2 states, and the 4Pi/2 state give a 
negligible contribution. 

In the case of a transition occurring under the in­
fluence of a spin magnetic dipole radiation which, at low 
energies, is the dominant case, the possibility of D-state 
contribution is ruled out because of the orthogonality 
of the S and D spatial functions and because transitions 
from D to D states give a negligible contribution. 

In the case of transition occurring under the influence 
of exchange currents, Austern7 has shown that the 
electric-quadrupole contribution is completely negligi­
ble. His calculation included transitions from the con­
tinuum fully symmetric S state to the triton ADi/2 
state as well as transitions from the 2D part of the 
continuum state to the triton 25*i/2 state. 

Thus we are concerned only with the 25i/2 states S 
and S' for the triton ground state and with the 25i/2 and 
and 45i/2 states for the continuum. The doublet spin 

6 G. Derrick and J. M. Blatt, Nucl. Phys. 8, 310 (1958). 
«J. M. Blatt, G. H. Derrick, and J. N. Lyness, Phys. Rev. 

Letters 8, 323 (1962). 
7 N. Austern, Phys. Rev. 83, 672 (1951); 85, 147 (1951). 
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functions are 

X l = 6 - i / 2 [ ( + + - ) + ( + _ + ) - 2 ( - + + ) ] , 

X2=2~^l(+ + - ) - ( + - + ) ] . 

The quartet spin functions are 

X3=(+ + +), 
X 4 =3r i /2[ (+ + - ) + ( + - + ) + ( - + + ) ] . 

A + (or —) indicates that the nucleon has spin up (or 
down). 

The isospin functions rji and t\2 for a system of two 
neutrons and one proton, in a state of quantum num­
ber T = \, are as follows: 

i7i=6-i/«[2(+ - - ) - ( - - + ) - ( - + - ) ] , 

„ = 2 - i " [ ( - + - ) - ( - - + ) ] . 

A + (or —) indicates that the nucleon is a proton (or a 
neutron). 

The combinations of spin and iso topic spin functions 
that are needed are the following: 

</>o=2-1/2(X2r?1-X1772), 

<35>1=2-1/2(X2772-X177l), 

02=2- 1 / 2(X 27 ? 1 + X17?2), 

03 = ^ 1 , (1) 

04 = ^3^2, 

05=X4?7i, 

06 = X4?72. 

We note that the four %'s, the two ̂ 's, and the seven 
0's form three orthonormal sets of functions, that 0O 

is fully antisymmetric, and that the functions (0i,02), 
(^3,^4), and (05,06) from three sets of functions of mixed 
symmetry which transform according to the permuta­
tion table given in Eqs. (3) of Ref. 2. 

The triton function has the following form : 

\pT = ^ 0 o + ^201 — ^102 , (2) 

where u is a fully symmetric space function and vi 
and v2 are space functions of mixed symmetry defined as 
follows: 

^=6- 1 / 2 [^ (12 ) 3)+g(13 ; 2) -2g(23 ) l ) ] J (3) 

»2=2-^[g(12 ,3) -£(13 ,2) ] . 

g(12,3) is a function symmetric in an interchange of par­
ticles 1 and 2, but neither symmetric nor antisymmetric 
in an interchange of 1 and 3 or 2 and 3. 

The continuum wave function is given by 

^contDoublet=« ,*o+V2d ,*i-w1d ,*2, (4) 

*Acont rtet==fl2</03 — fll/04+^2(/05— ^l</06-

u\ vu and viq', and, v2/ and v2qy are spatial functions 
which exhibit the same symmetry properties as u, vh 

and v2, respectively. 

The spatial functions u, vh and v2 are orthogonal. 
Similarly u', vu, viq

f, v2(/, and v2q are orthogonal. Be­
cause of the orthogonality of the continuum state and 
the bound state, we have the additional relation: 

( \ M w i t ) = 0 , 
which reduces to 

(uu')+ (i>ifli/)+ (v2v2d') = 0 , (5) 

where we have used the orthogonality of the spin-
isotopic spin functions 0. The following additional rela­
tions, coming from the symmetry properties of the 
spatial functions, have been used in our computation: 

(uv2q)= (uv2d)= ( w ' ) = (viv2d) 
= (v2Vld) = (VlV2q) = {Vtf)lq) = 0 . (6) 

III. CAPTURE RATE CALCULATION 

A. Direct Magnetic Dipole Transition 

At thermal energies, as was already mentioned in 
the preceding section, the transition occurs mainly 
through magnetic dipole radiation. The nucleon spin 
transition operator is 

3 

Gdirect = J E[/*»**( 1 + Tiz)fmag
p(t; — Xt) 

+ M w o r , ( l - r , 2 ) / m a g - ( r / - r , ) ] . (7) 

The <r's and r's are unit amplitude Pauli matrices that 
operate, respectively, on the %'s and 77's. JJLP and /xn are, 
respectively, the static magnetic moment of a proton 
and a neutron, r* is the position vector of particle i 
with respect to the center of gravity of the three 
nucleons. The functions /mag^r ' -u) and /m a g

n ( r /—r^ 
can be considered as the spatial distributions of moment 
densities about the centers of the nucleons. 

The transition matrix element is given by 

(M.E.)direct= / / ^r(r<)^" /G^0ont(r i)^8r^V 

with 

i=i J 

XiAcont(r\)dhi
J
nxnFmB,g

n(q)Yi / fa(u) 
i - i J 

X e^ xi<nl(\ — Tiz)\pcont(ri)d3ri, 

A similar expression is obtained for Fmag
n(q). 

In the static limit where q2 —> 0, which is applicable 
for slow incoming neutrons, it is reasonable to assume 
that the functions /magp(r' —**) and fmag

n(r' — r») can be 
taken as 8 functions. In that case, Fm^lq) and Fm^g

n(q) 
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being normalized to unity at q2 —» 0, may be set equal to 
unity. 

The mean transition probability is given in terms of 

Mmagdipole2 = | E £ { | (^Ttm\ « * ' r ' G , | ^ c o n t D o u b l e t ) | 2 

m x,y,z 

+ I (*T,m | e^Vx | ^ c o n t Q u a r t e t ) | 2 } • ( 8 ) 

The summation over m corresponds to the two pos­
sible spin projection m=zk\ for the bound state. 

After summation on spin and isotopic-spin variables, 
one finds the following result: 

M d i r e c t 2 = ( 4 / 9 ) ( M , - M p ) 2 [ ( ^ l ^ l / ) + ^ 2 ^ 2 / ) ) 2 

+ ( W > + W ) ) ! ] . (9) 
I t is to be noted that this expression vanishes if there 

is no state S' of mixed symmetry, as was mentioned in 
Sec. I. This result, originally obtained in Ref. 4 without 
the isospin formalism, requires the use of the orthogonal­
ity relation (5). 

B. Exchange Magnetic Dipole Transition 

We assume that the exchange moment arises only 
when two of the nucleons are close together. We assume 
also that the exchange-moment spatial distribution is 
close to the center of mass of this pair. Gexchange is 
assumed to be of isovector character, as are the static 
moments, and hence is given by the following expression: 

Gexchange = (flT ~ Mp) X) u(fij)<Jij(Tij) z . (10) 
i<3 

The r dependence is chosen to satisfy the requirement 
that, for mirror nuclei, the expectation values of ex­
pression (10) be of opposite signs. Thus we have the two 
possibilities: 

(a) Tij=Ti—Tj, 

(b) Tij=TiXrj. 

The a dependence has also to be antisymmetric in 
the interchange of particles i and j because the space 
dependence u{fij) is symmetric. We thus obtain for the 
axial vector form of cr#: 

(a') crij—<Ti~(rj, 

( b ' ) (Tij=<TiX(Tj. 

I t turns out that the combinations (a) (a') and (b)(b /) 
give identical results for the matrix elements of Gexchange. 
Similarly combinations (a)(V) and (b)(a') give identi­
cal results. However, the contributions associated with 
(a)(b') and (b)(a') are proportional to the S'-state 
probability because the expectation value of Gexchange 
between the symmetric part of the triton ground-state 
wave function vanishes. Henceforth we consider only 
the combination (a)(a'). 

For the spatial dependence we choose the following 
phenomenological model, suggested by SchifP: 

« ( ^ ) = g( f«) / ( r , - i ( r<+ry)) , (U) 

where g(r#) gives the dependence on the separation of 
the pair and /0*'—§( r*+ ri)) gives the distribution of the 
exchange moment about the center of mass of the pair 
ij at a point r'. 

Following the same procedure as the one outlined for 
the case of a transition through spin magnetic dipole 
radiation, we make the assumption that / [ r '—J( r »+ r y)] 
can be taken as a 8 function. Similarly, at the static 
limit, where q —> 0, the transition matrix element for the 
exchange current is independent of the form factor F(q) 
which is normalized to unity. 

We have retained only the fully symmetric S state 
for the bound state, because of the small percentage of 
mixed-symmetry S' state. However, in the case of the 
continuum state, there is no reason to believe that the 
mixed-symmetry S' states are present only with a small 
probability, so that these states have also been included. 

After summation on spin and isotopic-spin variables, 
we find that the continuum doublet S' state does not 
give any contribution and obtain the following result: 

^Texchange2== (p>T — M p ) 2 ( W 3 ) 

X {\{ulg{rn)+g{m)+g{rzl)-]ufY 

+i[«g(r12)-g(r13)>2/)+(l/v5) 
X<«[g(r i2)+g(f i8) -2g( f28)>i f f

, >] 2 } • ( H a ) 

By symmetry arguments this result can be simplified 
to the following form: 

^exchange 2 = (v>T~ Mp)2 

X16{<«g(r i 2 )« /> 2+|[<«g(f 1 2 )0 
+ ( l M ) « g ( . 1 2 ) - K ^ 2 3 ) > l / ) ] 2 } • (Hb) 

The second term of (11) can be further simplified; it 
reduces to 

(ug(r2z)vlq')
2. 

Thus the final result can be expressed as follows: 

•^exchange2 = (MT —Mp)2 

X16l(ug(rn)uy^ug(riz)vlqyi. ( l ie) 

Three alternative forms for «(/#) are discussed by 
Sachs.9 Of these, the form (9.38b) is equivalent to 
attaching a spatial exchange operator i\;spatiai to ex­
pression (11). However, using the transformation pro­
perties of Ui, vi, and v% under the spatial exchange 
operators given in Eq. (3) of Ref. 2, we find that the 
result ( l ie) is unaltered. The two other forms men­
tioned by Sachs9 represent spin-orbit coupling. They 
have not been considered in the present work. 

8 L. I. Schiff (private communication). 
9 R. G. Sachs, Nuclear Theory (Addison-Wesley Publishing 

Company, Cambridge, Massachusetts, 1953), p. 253; and also 
M. Verde, Handbuch der Physik, edited by S. Flugge (Springer-
Verlag, Berlin, 1957), Vol. 39, p. 144, 
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C. Total Magnetic Dipole Transition 

The square of the total matrix element, including both 
direct and exchange magnetic dipole transitions, is 
given by the following expression: 

i i? tota l 2=(16/9){[KMn-Mp)«^l / )+(W2/)) 

+ (v2V2q
/))+3^T-^)(ug(rn)vlq

,m. (12) 

The capture cross section is 

:) 

\fme\
zl2WrH

2n __ 
* = - l — ) M \ 

v\mv) 3mp
2e2 

(13) 

where Wr is the energy, expressed in nuclear units 
(0.506 MeV), given up to the photon, me is the electron 
mass, mv is the proton mass, and v is the mean velocity 
of thermal neutrons. 

IV. SPACE FUNCTIONS 

As with the bound state, we define, for the continuum 
state, the fully symmetric spatial function uf and the 
functions of mixed symmetry v{ and vz as follows: 

M' = ^ ' (3)- i^[g ' (12>3)+g ' (13 )2)+g ' (23, l ) ] ) 

V = 5 ' ( 6 ) - 1 ^ ' ( 1 2 , 3 ) + g ' ( 1 3 , 2 ) - 2 g ' ( 2 3 ) l ) ] , 

t.s' = 5 ' (2)-»*[ j ' (12,3)-g ' (13,2)] , 

where g'(12,3) [similar to the function g(12,3) which 
appears in the definition of the bound state] is a sym­
metric function with respect to the interchange of par­
ticles 1 and 2 but does not exhibit symmetry properties 
with respect to the interchange of nucleons 1 and 3 or 
2 and 3. Proper normalization of i/wt leads to 

, 4 ' = - l / ( 2 ) 1 / 2 and B'=-

Three types of bound-state wave functions are con­
sidered: Gaussian, Irving, and Irving-Gunn functions. 
For consistency we have associated a Gaussian con­
tinuum wave function to the Gaussian bound-state 
wave function and an exponential continuum wave 
function to the Irving and Irving-Gunn bound-state 
functions. Details of the calculation are given in 
Appendices A and B. 

A. Gaussian Wave Functions 

1. Triton Wave Function 

We have adopted SchifFs2 Gaussian wave function 
for the triton ground state. 

The fully symmetric space function is given by Eq. 
(24) of Ref. 2. 

with 
«= i4exp[ - (aV2) ( f i2 2 +f i8 2 +r 2 8

2 ) ] , 

A2=(3*/2a«)/w* and a = 0.384F" 1 . 

The states of mixed symmetry are given in terms of 
the following function g(12,3). 

g(12,3) = B e x p [ - (a'2/2)(ru
2+r23

2) - (/32/2)r 1 2
2 ] , 

where we allow the size parameter af occurring in g(12,3) 
to be different from the parameter a of the fully sym­
metric state. 

We define e=af—fi, 
For small e, the probability of the state S; is given by 

P c - ( 7 r 3 £ V ) / ( 3 3 / 2 o : ' 8 ) . 

2. Continuum Wave Function 

(15) 

Among the various calculations existing on elastic 
scattering of slow neutrons by deuterons,10 the only 
wave function that seems to be in good agreement with 
experimental results is of Gaussian form. We have used 
the trial function adopted by Burke and Haas, which 
is one of the few functions available where the coeffi­
cients, fitted by a variational calculation, are given 
explicitly and which is in fairly good agreement with 
experimental results. 

When polarization of the deuteron by the incident 
neutron is taken into account, they evaluate the doublet 
and quartet scattering lengths to be a2=2.97 F and 
#4=5.72 F, respectively. These values exhibit an in­
significant change from the scattering lengths obtained 
when polarization effects are not included. (#2=2.72 F 
and #4=5.24 F). Thus, we have neglected these polariza­
tion effects in our computation and Eq. (7) of Ref. 11 
becomes 

g'(i2,3) = x(R)i ?(r) , 
with 

x(R) = [e-aR2+ce-bR2yn, 

where the constants a and b are given in Ref. 12, and 
F(t) = f(r)/(kr). Since we are concerned with S wave 
functions we need only the spherically symmetric term 
fo(r) given by 

fo(r) = (l — Ci exp(—vir2)) smkr 

+ (c0—£2exp(—vir2)){\ — exp(—vir2)) coskr, (16) 

where 
R = r ! - r 2 ; r = - r 8 + | ( r i + r 2 ) ; 

(14) 

n is a normalization factor given by the following 
expression: 

n2=(Tr/2ay/2+2c(ir/(a+b)y/2+c2(<ir/2by/2. 

The only difference between doublet and quartet S; 

states is in the constants occurring in fQ(r) [Eq. (16)]. 
10 T. C. Griffith and E. A. Power, International Conference on 

Nuclear Forces and the Few-Nucleon Problems (Pergamon Press, 
Inc., New York, 1960), Vol. 2. 

11 P. G. Burke and F. H. Haas, Proc. Roy. Soc. (London) 
A252, 177 (1959). 

12 P. G. Burke and H. H. Robertson, Proc. Phys. Soc. (London) 
A70, 777 (1957). 
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As was stated in Sec. II , the two wave functions, i/wt 
and \f/T of the continuum and bound states, respectively, 
have to be orthogonal. But the functions we have at 
our disposal are approximate ones which do not satisfy 
the orthogonality relation (5). Thus, in order to realize 
this property, we have adjusted the coefficient c\ ap­
pearing in/o(r) for the doublet case. We have reduced 
the value given by Burke and Haas for c\ from 3.84 to 
2.05. This adjustment leaves the quartet scattering 
length, which is the one in closest agreement with 
experiments, as well as the asymptotic behavior of the 
continuum functions, unchanged. 

3. Exchange Moment 

To be consistent again, we choose for the spatial part 
of the exchange moment a Gaussian form given by 

g(ri3) = Co exp(-/iGr { j
2) . 

Since it is assumed that exchange effects are due to 
two-body interactions, we take for no the square of the 
range of nuclear forces (MG = 0.5625X1026 cm - 2) . 

The constant CQ is determined by equating the ex­
pectation value of the exchange operator (10) between 
the dominant fully symmetric part of the triton ground 
state to (nT—Pp)- I t is found to be equal to 1.668. 

4. Form-Factor Analysis 

An independent estimate of the S'-state probability 
based on the elastic electron-scattering data1 was ob­
tained by SchifT.2 The body form factors F\(q) and 
F2(q), defined, respectively, in Eqs. (13) and (14) of 
Ref. 2, were used to determine the two unknown param­
eters a and P. We give below the expressions for F\{q) 
and F2(q) taking into account the possibility of a dif­
ferent size parameter a for the mixed symmetry state S\ 

Fl(q) = exp(-q*/l8a*)J 

Uq) = [-) — ) e x p ( - ^ 2 / [ 9 ( a 2 + a / 2 ) ] ) . 
\ 6 / W / W + a ' 2 / 

B. Irving Wave Function 

1. Triton Wave Function 

The fully symmetric space function is given as 
follows: 

^ = ^ e x p [ - ( a / 2 ) ( r 1 2
2 + r 1 3

2 + r 2 3 2 ) 1 / 2 ] ? 

with A*= (33/V)/(1207r3) and a = 1.27 F"1 . 
The states of mixed symmetry are given in terms of 

the following function g(12,3). 

g(12,3) = B e x p [ - (a2f 1 2
2 + Q : V 2 3 2 + ^ V 1 2 2 ) 1 / 2 

+ {a/2)(rn
2+rn2+m2)m~]. 

The probability is given by 

P=420x3CB6)2 /(33 /V8). 

2. Continuum Wave Function 

In this case, since there is no reason to adopt a 
Gaussian form for the continuum wave function, we 
choose for the deuteron wave function x(R) a Hulthen 
wave function. 

x ( R ) = ( A T / ( 4 x ) 1 / 2 ) [ e x p ( - ^ ) - e x p ( - ^ ) ] / ^ , 

with a=0.232 F"1 , b= 1.434 F" 1 and 7V2 = 0.766 F" 1 . 
For the neutron function F(r) we choose the following 

form: 

F(r) = (l-c1exp(-vr))-(as/r)(l-exp(-vr)), 

where as represents the neutron-deuteron scattering 
length. We choose for as the accepted set of experi­
mental values: 

(^doublet = 0-8 F (as)quartet = 6 . 2 F . 

Choosing a reasonable value for the parameter v, 
namely *> = 0.5 F - 1 , the coefficient d is determined by 
the orthogonality of t/wt and fa- I t is to be noted that 
the orthogonality relation (5) is not sensitive to vari­
ations of the parameter v, while it is very sensitive to 
variations of the coefficient ch just as was found for the 
Gaussian case. In the present case, we have determined 
the value of c\ to be equal to 3.8. 

3. Exchange Moment 

We choose for the spatial part of the exchange 
moment the following form: 

g(n7) = C , jexp(-jur^), 

where \x =0.75 F _ 1 and Cj is found to be equal to 1.21. 

4. Form-Factor Analysis 

The two-body form factors Fi(q) and F2(q) are given 
by 

^ i W = [ l+ (2^ 2 / 9a 2 ) ] - 7 / 2 , 

/ 2a3 \ /a+a'\ 
F2(q) = (21Py> ( — ) ( — — ) 

\ 9 c / 2 A 2a' / 

r/H-cA2 2g2y9/2 

q L\ 2a' ) 9a/2J 

C. Irving-Gunn Wave Function 

1. Triton Wave Function 

u^A exp[-(a /2)(r 1 2
2+r 1 3

2+f23 2 ) 1 / 2 ] / 

( f l2 2 +f 1 3
2 +/ '23 2 ) 1 / 2 , 

with ^ 2 = 31/2o;4/(27r3) and a=0.769 F" 1 as given in 
Ref. 13. 

13 B. L. Berman, L. J. Koester, and J. H. Smith, Phys. Rev. 133, 
B117 (1964). 
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The function g(12,3) is given by 

e x p C - C a V ^ + a V s ^ + ^ V ^ 2 ) 1 / ^ ^ ^ ) ^ ^ ^ ^ ^ ^ ^ 2 ) 1 7 2 ] 
£(12,3) = B . 

(ri22+*'132+/'232)1/2 

The probability P is given in terms of Be and a by the following relation: 

P=107r3(^e)2/(33 /2a / 6). 

2. Continuum Wave Function 

We choose for the continuum wave function the same form, and for the parameter v the same value, as the ones 
used in the Irving case. The orthogonality between ^cont and \f/T determine the coefficient c\ to be equal to 4.9. 

3. Exchange Moment 

Again we choose for the spatial part of the exchange moment operator the same form as the one given in the case 
of Irving wave function. 

g(rij) = Ci.G. expi-fju.Gfij), 

where MI.G. = MI. = 0-7'5 F - 1 and G . G . = 1.25. 

4. Form-Factor Analysis 

The form factors Fi(q) and F2(q) are given by the following expressions: 

[ l + 2 ( l + 2 g 2 / 9 a 2 ) 1 / 2 ] 
Fi(q) = (i) 

Mq) 

[ l + ( l + 2 g 2 / 9 « 2 ) 1 / 2 ] 2 

8 a V \ / P \ 1 / 2 

(l+2q2/9a2)~3/2, 

/Sa2q2\/P\L 

\3a'4Al0/ 
(x2+2q2/9a,2)-*/2(x+(x2+2q/9a/2)1/2)-

X 
-(x+2(x2+2q2/9a/2)1/2) 

with 
(x2+2q+9a/2) 

Hi) 
(x+(x2+2q2/9a,2)1/2). 

x=(a+af)/2af 

V. NUMERICAL RESULTS 

The latest experimental data on the capture of ther­
mal neutrons of mean velocity A = 2 . 2 X 1 0 5 cm/sec by 
deuterium are due to Jurney and Motz,14 and give a 
value of 0.60±0.05 mb for the cross section. 

An upper limit for the probability P of the state of 
mixed symmetry S', obtained by neglecting the con­
tribution from the exchange moment interaction, has 
already been reported.3,15 We find that this probability 
depends sensitively on the parameter a! which occurs in 
the S'-state wave function. For a=a, which was the 
case considered by Schiff,2 this probability is found to be, 
respectively, 0.09, 0.005, and 0.003% for the Gaussian, 
Irving, and Irving-Gunn wave function. 

If one considers only the capture due to exchange 
moment interaction, it is found that the cross section 
o-exchange, which is independent of a', is of the same order 
of magnitude as the experimental capture-rate cross 
section in the case of Gaussian wave function. In the 

cases of Irving and Irving-Gunn wave functions, the 
order of magnitude of the exchange moment contribu­
tion is found to be, respectively, 50 and 100 times the ex­
perimental value. In Table I we give the cross section 
êxchange for the different types of wave functions. 

However, it is found that the spin and exchange mo­
ment contributions interfere destructively and thus 
the value of the 5 r-state probability is considerably in­
creased, particularly in the case of the Irving-Gunn 
wave function. This probability is also sensitively de­
pendent on the value of the parameter a! occurring in 
the S'-state wave function. For each value of a\ 

TABLE I. The contribution to the capture cross section due to 
exchange interaction only is given for Gaussian, Irving, and 
Irving-Gunn wave functions. 

^exchange 

(mb) 

14 F. T. Jurney and H. T. Motz (unpublished). 
15 The values quoted in Ref. 3, were rough estimates; they have 

been changed by a more precise calculation to those in column (1). 

Gaussian wave function: 
Irving wave function: 
Irving-Gunn wave function: 

0.24 
29.6 
59.8 
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TABLE II. Values for an upper limit of the probability P of the 
state S' of mixed symmetry obtained from the slow-neutron cap­
ture rate and from the H3 and He3 form-factor analysis, are given 
for different values of the size parameter a!. 

a 

a 
1.1a 
1.3a 
2.0a 

a 
1.1a 
1.3a 
1.5a 
2.0a 

a 
1.1a 
1.3a 
1.5a 
2.0a 

From 
slow-neutron 
capture rate 
neglecting 
exchange 
moment 

(%) 

P 

From slow-neutron 
capture rate 

including 
exchange moment 

Solution 1 Solution 2 
(%) (%) 

(a) Gaussian wave functions 
0.093 
0.21 
1.02 

15 

0.012 0.23 
0.025 0.53 
0.11 2.74 
1.9 35 

(b) Irving wave functions 
0.005 
0.0065 
0.011 
0.016 
0.028 

0.044 0.41 
0.043 0.58 
0.022 1.05 
0.0003 1.57 
0.15 2.53 

(c) Irving-Gunn wave functions 
0.003 
0.004 
0.008 
0.016 
0.062 

0.20 0.31 
0.35 0.41 
0.67 0.965 
1.10 2.09 
0.46 12 

From 
form-factor 

analysis 
(%) 

3.5 
2.9 
2.5 
7 

4.6 
4.3 
4.26 
4.73 
8.06 

3.20 
2.93 
2.71 
2.73 
3.50 

two values for the probability are obtained as solutions 
of the quadratic equation (12). 

We give in Table I I this upper limit on P for different 
values of a!. For a comparative study we also tabulate 
the Sf probability obtained from the H3 and He3 form-
factor analysis, and the values obtained from the slow 
neutron capture rate neglecting the exchange moment 
contribution. 

Assuming that the solution (2) [column (4) of Table 
I I ] , obtained from capture-rate analysis is the one to 
be compared with the values of P obtained from form-
factor analysis [column (5)], it is found that for a' = a, 
there is no agreement between these two values. As 
was reported in Ref. 3, the inclusion of the Z)-state 
contribution being studied by Schifl16 is expected to 
lower the value of the S'-state probability needed to 
account for the electron elastic-scattering data. We have 
already mentioned that in our case the .D-state con­
tribution is negligible. Thus, at present, if one allows the 
size parameters a and af to be different, the values of 
a' which seem to be most suitable in each case are 
a! — 1.3a for the Gaussian wave function and a''= 1.5a 
for the Irving-Gunn and perhaps for the Irving wave 
functions. 

A theoretical analysis of the preliminary inelastic-
scattering experimental data17 by Griffy and Oakes18 

indicate that while the Irving-Gunn wave function 
gives the best agreement with the experimental results, 

16 L. I. Schiff, (private communication). 
17 A. Johansson, (private communication). 
18 T. A. Griffy and R. J. Oakes, Phys. Rev. 135, B1161 (1964). 

the Gaussian wave function is in poor agreement. They 
also find in the case a! = a that they can fit the experi­
mental data with practically no S"-state admixture as 
shown in Fig. 4 of Ref. 18. The results of Table 11(c) 
support this conclusion. However, an independent 
estimate of the parameter a! is necessary in order to fix 
the value of the probability P. Further, it is expected 
that a value of a! too different from a may not fit the 
charge form factor or the Coulomb energy of He3. 
Thus we conclude from our results that the probability 
of the S' state of mixed symmetry cannot exceed 2%. 
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APPENDIX A: GAUSSIAN WAVE FUNCTION 

Evaluation of the integrals needed in the calculation. 
(1) 

d*R 
/ 1 = \dh e-

aR2-br2-c*'R sm(ikR) 
r d6K 

•• \ dh e~aR2-
J R 

4TT 3 & 

{^ab-c2Y 
- exp 

m i 
L 4(4^6-c2) J 

(Al) 

(2) The integral 72, similar to Ih but with sin(%kR) 
replaced by cos^kR), requires some attention. The inte­
gration on r can be easily performed. The result is the 
following: 

12= d*r-
d*R 
— e 
R 

-oi?2-6r2-cr.R ' R COS( f^ ) 

4TT5/2 

b3/2 
dR R cos(±kR)e~^ab-c2)/(46)]i?2 

After partial integration one obtains 

8TT5/2 

/ 2 =-
•2U1/2 <i-(**X0 

with 
(4:ab-c2)b 

j= / e-wt-'WWsmQkRWR. 

(A2) 

Let us replace sin(JM) in / by its expression in terms 
of exp(iikR). With appropriate changes of integration 
variable in the two terms of / , one obtains: 

/ b \ 1 / 2 

/ = 2 ( — Fix), (A3) 
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with 

and 

F(x) 
Jo 

et2dt, 

x=ik(b/(4:ab-c2)y/2. 

The function F(x) has been tabulated, for real values 
of x, by Miller and Gordon19 for values of x ranging from 
zero to 12.00. The function F(x) can be expanded in the 
following way: 

F(x) = xl 
2x2 4x4 8x6 16x8 1 + + 
3 15 105 945 

The values of x, of interest to us, turned out to be 
always small enough for the approximation F(x)^x to 
be valid. 

The final expression of 1\ is given by 

8 T T 5 / 2 

/ 2 = -
(4ab-c2)(bl/2) 

X 1-k 
\ab-c •f*M—fy 

7 V \\ab-c2) J. 

(A4) 

APPENDIX B: IRVING AND IRVING-GUNN 
WAVE FUNCTIONS 

Using the following notation. 

we obtain 

^ = ^ e x p [ - ( i a ) ( 2 p 2 + 3 r 2 / 2 ) 1 / 2 ] / ( 2 p 2 + 3 r 2 / 2 ) n / 2
J 

(2p2-3r2/2) 
Vl=(6)-1/2Be 

v2=(2)1/2Be 

(2p2+3r2 /2) ( n + 1 ) / 2 

X e x p [ - ( | a ) ( 2 p 2 + 3 r 2 / 2 ) i / 2 ] , 

9-r 

(2p2+3r2/2)<*+1>/2 

Xexp[ - ( i a ) (2p 2 +3r 2 / 2 ) 1 / 2 ] , 
19 W. Lash Miller and A. R. Gordon, J. Phys. Chem. 35, 2785 

(1931). 

with n equal to 0 and 1, respectively, for the Irving 
and Irving-Gunn wave functions. 

The integrals required in the calculation are of the 
form 

J = / d3rdps-
(2p2-3r2/2)« 

(2p2+3f2/2)<»+1>/2 

X e x p [ - ( ^ ) ( 2 p 2 + 3 r 2 / 2 ) 1 / 2 ] [ e x p ( - X r ) ] 

X { l ~ c i e x p ( - ^ p ) - ( a s / p ) [ l - e x p ( ~ ^ ) ] } / r 3 

where the parameter m takes the values 0 or 1 and X is 
a constant. Following the method given by Gunn and 
Irving,20 we change the variables r and p into the new 
set R and \p with 

yJ2p=Rsm\(/ and (f) 1 /V=i? cosi^. 

R ranges from 0 to <*> and \p from 0 to Jx. Although these 
integrals can be evaluated analytically, because of the 
complexity of the analytical result, the calculations 
were done numerically with a computer. 

In evaluating the analytical expressions for the body 
form factors Fi(q) and ^2(2), we transform the two 
three-dimensional integrals over p and r into one six-
dimensional integral. The angular integration is per­
formed by expanding the plane wave in Gegenbauer 
polynomials.21 The final integration is performed using 
the following relations.22 

[exp(-pR)~]RU2(aR)dR 
' o 

and 

/ 

--23a2r(i)w~1/2p/(p2+a2y 

[exp(-pR)^RJ2(aR)dR 

a2tp+2(p2+a2)1/2l 

(p2+a2y/2lp+(p2+a2)1/2J 
20 J. C. Gunn and J. Irving, Phil. Mag. 42, 1353 (1951). 
21 A. Sommerfeld, Partial Differential Equations in Physics 

(Academic Press Inc., New York, 1949). 
22 W. Magnus and F. Oberhettinger, Formulas and Theorems for 

the Functions of Mathematical Physics (Chelsea Publishing 
Company, New York, 1954). 
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